#
Python API Documentation
#
Module: realeyes.face_verification
#
FaceVerifier class
#
class FaceVerifier(model_file, max_concurrency=0)
The Face Verifier class
#
__init__(self, model_file, max_concurrency=0)
FaceVerifier constructor: loads model file, sets up the processing.
Parameters:
model_file(str): path for the used modelmax_concurrency(int): maximum allowed concurrency, 0 means automatic (using all cores), default: 0
#
detect_faces(self, image)
Detects the faces on an image.
Parameters:
image(numpy.ndarray): image of the face(s)
Returns:
- list[Face]
#
embed_face(self, face)
Returns the embedding of the detected face.
Parameters:
face(Face): face to embed.
Returns:
- list[float]
#
compare_faces(self, embedding1, embedding2)
Parameters:
embedding1(list[float]): embedding of the 1th faceembedding2(list[float]): embedding of the 2nd face
Returns:
- Match
#
get_model_name(self)
Returns the name (version etc) of the loaded model.
Returns:
- str
#
Module Functions
#
get_sdk_version_string()
Returns the version string of the SDK (and not the model).
Returns:
- str
#
Result classes
#
Face
#
class Face
#
__init__(self, image, landmarks, bbox=BoundingBox(x=0, y=0, width=0, height=0), confidence=0.0)
Face constructor to use a 3rd party face detector as face source
Parameters:
image(numpy.ndarray): image of the facelandmarks(list[Point2d]): landmarks of the face, see landmarks specificationbbox(BoundingBox): bounding box of the faceconfidence(float): confidence value of the detected face
#
bounding_box(self)
Returns the bounding box of the detected face.
Returns:
- BoundingBox
#
confidence(self)
Returns the confidence value of the detected face.
Returns:
- float
#
detection_quality(self)
Returns the detection quality of the detected face.
Returns:
- DetectionQuality
#
landmarks(self)
Returns the detected landmarks of the face.
See also: landmarks specification.
Returns:
- list[Point2d]
#
Point2d
#
class Point2d(x, y)
Point2d class for the landmarks
Attributes:
x(float): x coordinate of landmark.y(float): y coordinate of landmark.
#
BoundingBox
#
class BoundingBox(x, y, width, height)
Bounding Box class for the faces
Attributes:
x(int): X coordinate of the top-left corner.y(int): Y coordinate of the top-left corner.width(int): Width of the bounding box in pixels.height(int): Height of the bounding box in pixels.
#
Match
#
class Match
Face match class
Attributes:
similarity(float): Similarity of the faces
#
DetectionQuality
#
class DetectionQuality
Detection quality indicator (enum)
Attributes:
Good: No issues detectedBadQuality: Bad quality detectedMaybeRolled: Face maybe rolled, embeddings could be incorrect